Quotients by non-reductive algebraic group actions

نویسنده

  • Frances Kirwan
چکیده

Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions, but the groups involved are not always reductive. For example, in the case of moduli spaces of hypersurfaces (or, more generally, complete intersections) in toric varieties (or, more generally, spherical varieties), the group actions which arise naturally are actions of the automorphism groups of the varieties [4, 5]. These automorphism groups are not in general reductive, and when they are not reductive we cannot use classical GIT to construct (projective completions of) such moduli spaces as quotients for these actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic implosion and non-reductive quotients

There is a close relationship between Mumford’s geometric invariant theory (GIT) in (complex) algebraic geometry and the process of reduction in symplectic geometry. GIT was developed to construct quotients of algebraic varieties by reductive group actions and thus to construct and study moduli spaces [28, 29]. When a moduli space (or a compactification of a moduli space) over C can be construc...

متن کامل

Quotients by Reductive Group, Borel Subgroup, Unipotent Group and Maximal Torus

Consider an algebraic action of a connected complex reductive algebraic group on a complex polarized projective variety. In this paper, we first introduce the nilpotent quotient, the quotient of the polarized projective variety by a maximal unipotent subgroup. Then, we introduce and investigate three induced actions: one by the reductive group, one by a Borel subgroup, and one by a maximal toru...

متن کامل

ar X iv : m at h / 07 03 13 1 v 1 [ m at h . A G ] 5 M ar 2 00 7 TOWARDS NON - REDUCTIVE GEOMETRIC INVARIANT THEORY

We study linear actions of algebraic groups on smooth projective varieties X. A guiding goal for us is to understand the cohomology of “quotients” under such actions, by generalizing (from reductive to non-reductive group actions) existing methods involving Mumford’s geometric invariant theory (GIT). We concentrate on actions of unipotent groups H, and define sets of stable points X and semista...

متن کامل

Algebraic Symplectic Analogues of Additive Quotients

Motivated by the study of hyperkähler structures in moduli problems and hyperkähler implosion, we initiate the study of non-reductive hyperkähler and algebraic symplectic quotients with an eye towards those naturally tied to projective geometry, like cotangent bundles of blow-ups of linear arrangements of projective space. In the absence of a Kempf-Ness theorem for non-reductive quotients, we f...

متن کامل

Nonabelian Localization in Equivariant K-theory and Riemann-roch for Quotients

We prove a localization formula in equivariant algebraic K-theory for an arbitrary complex algebraic group acting with finite stabilizer on a smooth algebraic space. This extends to non-diagonalizable groups the localization formulas of H.A. Nielsen [Nie] and R. Thomason [Tho5] As an application we give a Riemann-Roch formula for quotients of smooth algebraic spaces by proper group actions. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008